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Abstract

CORD is a new design of a telco central office 
that replaces closed and proprietary hardware 
with software running on commodity servers, 
switches, and access devices. It allows network 
operators to benefit from both the economies of 
scale (infrastructure constructed from a few com-
modity building blocks) and agility (the ability to 
rapidly deploy and elastically scale services) that 
commodity cloud providers enjoy today. This 
article introduces the CORD architecture and 
describes an open reference implementation of 
CORD that is available for evaluation.

Challenges
Network operators face significant challeng-
es meeting bandwidth demands and providing 
enhanced services. For example, AT&T has seen 
data traffic increase by 100,000 percent in the 
last eight years, and plans are now underway to 
roll out ultra-fast fiber and access to 100 cities 
across the United States [1]. At the same time, 
introducing a new feature often takes months 
(waiting for the next vendor product release) and 
sometimes years (waiting for the standardization 
process to run its course).

In response, network operators are looking 
for ways to benefit from both the economies of 
scale (infrastructure constructed from a few com-
modity building blocks) and agility (the ability to 
rapidly deploy and elastically scale services) that 
commodity cloud providers enjoy.

Cloud economies and agility are especially 
needed at the edge of the operator network — in 
the telco central office (CO) — which contains 
a diverse collection of purpose-built devices, 
assembled over 50 years, with little coherent or 
unifying architecture. For example, AT&T cur-
rently operates 4700 COs, some of which con-
tain up to 300 unique hardware appliances. This 
makes them a source of significant capital expen-
diture (CAPEX) and operational expenditure 
(OPEX), as well as a barrier to rapid innovation.

This article describes CORD, an architecture 
for the telco CO (or cable head-end) that com-
bines software-defined networking (SDN), net-
work functions virtualization (NFV), and elastic 
cloud services to build cost-effective, agile access 
networks. In addition to introducing the architec-
ture, this article also outlines an open reference 

implementation of CORD that is available for 
evaluation.

Introducing CORD
CORD re-architects the CO as a data center, 
and in doing so unifies three related but distinct 
technology trends.

SDN: Separates the network’s control and 
data planes and makes the control plane pro-
grammable. This simplifies network infrastruc-
ture and permits inexpensive white-box switches 
that can be built using merchant silicon.

NFV: Moves the data plane from hardware 
devices to virtual machines (VMs) running on 
commodity servers. This replaces high-margin 
devices with commodity hardware and permits 
more agile software-based orchestration. 

Cloud: Defines best practices in scalable 
services, leveraging software-based solutions, 
micro-services, virtualized commodity platforms, 
elastic scaling, and service composition. This 
allows network operators to innovate more rap-
idly.

In unifying these three trends, CORD goes 
beyond what each technology contributes in iso-
lation:
•	It uses SDN not only to simplify the net-

working infrastructure, but also as a source 
of innovative services that can be offered to 
customers.

•	It not only supports legacy network func-
tions in VMs, but also disaggregates func-
tionality into finer-grained elements.

•	It not only supports conventional SaaS, but 
also extends the cloud paradigm to include 
fiber to the home and wireless access as 
elastic access as a service.
In short, CORD’s goal is to not only replace 

today’s purpose-built hardware devices with their 
more agile software-based counterparts, but also 
make the CO an integral part of every telco’s 
overall cloud strategy, enabling a rich collec-
tion of services, including access for residential, 
mobile, and enterprise customers.

Commodity Hardware

CORD runs on commodity servers and white-box 
switches, coupled with disaggregated packaging 
of media access technologies. These hardware 
elements are then organized into a rack-able 
unit, called a POD, that is suitable for deploy-

Central Office 
Re-Architected as a Data Center

Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy Bavier, Saurav Das, Jonathan Hart, Guru Palukar, and William Snow

SDN Use Cases for Service Provider Networks

CORD is a new design 
of a telco central office 
that replaces closed and 
proprietary hardware with 
software running on com-
modity servers, switches, 
and access devices. It 
allows network operators 
to benefit from both the 
economies of scale (infra-
structure constructed 
from a few commodity 
building blocks) and 
agility (the ability to rap-
idly deploy and elastically 
scale services) that com-
modity cloud providers 
enjoy today.

Larry Peterson, Ali Al-Shabibi,Scott Baker, Andy Bavier, Jonathan Hart, Guru Palukar, and William Snow are with Open Networking Laboratory; Saurav Das is with 
the Open Networking Foundation; Tom Anshutz is with AT&T.



IEEE Communications Magazine • October 2016 3

ment in a telco CO. 
We have settled on a particular configura-

tion for an initial reference implementation of 
CORD. It includes:
•	Servers: Open Compute Project 

(OCP)-qualified QUANTA STRATOS-
S210-X12RS-IU servers, each configured 
with 128 GB of RAM, 2  300 GB HDDs, 
and a 40GE dual-port NIC.

•	Switches: OCP-qualified and OpenFlow-en-
abled Accton 6712 switches, each config-
ured with 32  40GE ports, and doubling as 
both leaf and spine switches in the CORD 
fabric.

•	I/O Blades: OCP-contributed AT&T Open 
GPON — NFV OLT Line Card. Celesti-
ca-manufactured Optical Line Termination 
(OLT) “pizza boxes” that include merchant 
silicon OLT MAC chips from Microsemi. 
This is a 1u-blade that includes 48  2.5 Gb/s 
gigabit passive optical network (GPON) 
interfaces and 6  40GE uplinks [2].
The servers, switches, and OLT blades are 

assembled into two virtual racks (single physi-
cal rack) as illustrated in Fig. 1. The servers and 
OLT blades are interconnected by a leaf-spine 
switching fabric, consisting of two spine switches 
and two leaf (top-of-rack) switches per virtual 
rack. Also shown in the figure, Leaf-2 is connect-
ed to an upstream router, and the OLT blades 
are connected via GPON to ONTs and home 
routers.

The servers run Ubuntu LTS 14.04 and 
include Open vSwitch (OvS). The switches run 
the open source Atrium software stack [3], which 
includes Open Network Linux, the Indigo Open-
Flow Agent (OF 1.3), and Broadcom’s Open-
Flow Data Plane Abstraction (OF-DPA), layered 
on top of Broadcom merchant silicon.

Figure 1 shows just one of many possible 
hardware configurations. For example, the leaf 
switches have sufficient capacity to support up 
to 24 dual-port servers per rack, and the spine 
switches have sufficient capacity to support up 
to 16 racks. At the other end of the spectrum, it 
is also possible to configure a “micro POD” that 
includes only leaf switches and fits in a partial 
rack. 

Figure 1 also shows two OLT blades, but 
any access technology can be incorporated into 
CORD. This includes other residential technolo-
gies (e.g., 10GPON, G.Fast, DOCSIS), as well as 
broadband base units (BBUs) connecting mobile 
networks and carrier Ethernet connecting enter-
prises.

Software Building Blocks

With respect to software, CORD’s reference 
implementation exploits four open source proj-
ects, as depicted in Fig. 2.

OpenStack [4] is the cluster management 
suite that provides the core Internet as a service 
(IaaS) capability, and is responsible for creat-
ing and provisioning VMs and virtual networks 
(VNs). 

Docker [5] provides a container-based means 
to deploy and interconnect services. It also plays 
a role in deploying CORD itself (e.g., the other 
management elements are instantiated in Docker 
containers).

ONOS [6] is the network operating system 
that manages both software switches and the 
physical switching fabric. It hosts a collection of 
control applications that implement subscriber 
services and manage the switching fabric. 

XOS [7] is a framework for assembling and 
composing services. It unifies infrastructure ser-
vices (provided by OpenStack), control plane ser-
vices (provided by ONOS), and any data plane or 
cloud services (running in VMs or containers). 

To allow for the widest possible collection of 
services, the reference implementation supports 
services running in VMs, in containers running 
directly on bare metal, and in containers nested 
inside VMs.

ONOS plays two roles in CORD. It both 
interconnects VMs (this includes implementing 
VNs and managing flows across the switching 
fabric) and provides a platform for hosting con-
trol programs that implement CORD services. 
Two examples of the latter are described in the 
next section (vOLT and vRouter).

Transformation Process

Given this hardware/software foundation, trans-
forming today’s CO into CORD is a two-step 
process. The first step is to disaggregate and 
virtualize the devices, that is, turn each pur-
pose-built hardware device into its software 
counterpart running on commodity hardware.

The second step is to provide a framework 
into which the resulting disaggregated elements 
can be plugged, producing a coherent end-to-
end system. This framework defines the unifying 
abstractions that forge this collection of hard-

Figure 1. Target hardware POD built from commodity servers, I/O blades, 
and switches.
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ware and software elements into a scalable and 
agile system. The following two sections describe 
these two steps to re-architect the CO in greater 
detail.

Disaggregating Legacy Devices
The first step involves disaggregating the exist-
ing hardware devices, transforming each legacy 
device into its commodity hardware plus software 
service counterpart. This section walks through 
the process for the legacy devices highlighted in 
Fig. 3, which includes optical line termination 
(OLT), customer premises equipment (CPE), 
and broadband network gateways (BNGs). We 
do not virtualize the Ethernet aggregation switch, 
per se, but the switching fabric in Fig. 1, under 
the control of ONOS, effectively replaces it.

For the sake of concreteness, this article 
focuses on the residential use case (i.e., GPON 
technology and the corresponding OLT device). 
However, the approach is equally applicable to 
other access technologies, and CORD is a gen-
eral service delivery platform that also supports 
mobile and enterprise customers.

Benefits and Challenges

OLT is a large capital investment, involving 
racks of closed and proprietary hardware that 
terminate access for tens of thousands of sub-
scribers. Virtualizing OLT is especially chal-
lenging because, unlike network appliances that 
are actually implemented by software running 
on vendor-branded commodity servers, OLT is 
implemented primarily in hardware. CPE is cur-
rently distributed to tens of thousands of cus-
tomer sites per CO, making them a significant 
operational burden. This is especially true when 
a service upgrade requires a hardware upgrade. 
BNGs are expensive and complex routers that 
have historically aggregated much of the func-
tionality provided by a CO, making them difficult 
to evolve in an agile and cost-effective way.

Disaggregating and virtualizing each physical 
device results in three elements: (1) merchant 
silicon, including both commodity servers and 
white-box switches; (2) a control plane function, 
to which we refer as the SDN element; and (3) 
a data plane function, to which we refer as the 
NFV element. Both NFV and SDN elements are 
implemented by software running on commodity 
servers, where it is considered an NFV element 
if packet processing is entirely in software, and 
it is considered an SDN element if that software 
also controls commodity switches and I/O blades 
through an open interface like OpenFlow. Said 
another way, NFV elements run on commodity 
servers, while SDN elements run on commodity 
servers but also control commodity switches.

The rest of this section shows how this pat-

tern is applied to OLT, CPE, and BNG, resulting 
in virtual incarnations of each physical device. 
It is not a goal to preserve a one-to-one map-
ping between physical and virtual devices, and 
in fact, the opposite is true. Virtualizing legacy 
hardware provides an opportunity to disaggre-
gate and refactor their functionality, as illustrat-
ed throughout this section.

Disaggregating/Virtualizing the OLT
OLT terminates the optical link in the CO, with 
each physical termination point aggregating a 
set of subscriber connections. The first challenge 
is to create an I/O blade with the PON OLT 
medium access control (MAC), and to this end, 
AT&T has worked with the Open Compute Proj-
ect to develop an open specification for an Open 
GPON OLT in the form of a 1RU “pizza box.” 
This box includes the merchant silicon GPON 
MAC chips under control of a remote control 
program via OpenFlow. 

These boxes are then brought under the same 
SDN-based control paradigm as the white-box 
based switching fabric. The resulting control pro-
gram, called virtual OLT (vOLT), runs on top of 
ONOS, and implements all other functionality 
normally contained in a legacy OLT chassis (e.g., 
GPON protocol management, 802.1ad-compli-
ant VLAN bridging). That is, vOLT implements 
authentication on a per-subscriber basis, estab-
lishes and manages VLANs connecting the sub-
scriber’s devices to the CO switching fabric, and 
manages other control plane functions of the 
OLT. 

Disaggregating/Virtualizing the CPE
CPE, including both the GPON-terminating 
ONT and also a “home router” or “residential 
gateway,” is installed in the customer’s prem-
ises. They often run a collection of essential 
functions such as Dynamic Host Configuration 
Protocol (DHCP) and Network Address Trans-
lation (NAT) and optional services (e.g., firewall, 
parental control, VoIP) on behalf of residential 
subscribers. More sophisticated enterprise func-
tions are also common (e.g., WAN acceleration, 
IDS), but this article focuses on the residential 
use case. By extending the capabilities of CPE 
in the cloud, new value-added services as well as 
customer care capabilities can be provided where 
they could not before because of limitations in 
the hardware. 

Our virtualized version of CPE, called virtual 
subscriber gateway (vSG), also runs a bundle of 
subscriber-selected functions, but it does so on 
commodity hardware located in the CO rather 
than at the customer’s premises. There is still a 
device in the home (to which we still refer as the 
CPE), but it can be simplified, with some of the 
functionality that ran on the original CPE moved 
into the CO and running in a VM on commodi-
ty servers. In other words, the “customer LAN” 
includes a remote VM that resides in the CO, 
effectively providing every subscriber with direct 
ingress into the telco’s cloud.

CORD permits a wide range of implemen-
tation choices for subscriber bundles, including 
a full VM, a lightweight container, or a chain 
of lightweight containers. Our reference imple-
mentation uses a container-per-subscriber model, 

Figure 3. Legacy central office, including three devices (CPE, OLT, BNG) to 
be virtualized and disaggregated.
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and gives subscribers the ability to select from a 
small collection of features (e.g., DHCP, NAT, 
firewall, uplink/downlink speeds, parental fil-
tering). Each feature is then controlled by con-
figuring the container bound to the subscriber, 
for example, using Linux mechanisms like ipt-
ables, dnsmasq, and tc. Experiments show this 
approach conservatively supports 1000 subscrib-
ers per server, with round-trip latency through 
the CORD POD well under 1 ms.

Disaggregating/Virtualizing the BNG
A BNG is one of the more complex and expensive 
devices in a CO, providing the means through 
which subscribers connect to the public Internet. 
It minimally manages a routable IP address on 
behalf of each subscriber, and provides that sub-
scriber with some type of network connectivity. 
In practice, however, the BNG also bundles a 
large collection of value-added features and func-
tions, including quality of service (QoS), shaping 
and policing, virtual private networks (VPNs), 
generic routing encapsulation (GRE) tunneling, 
multiprotocol label switching (MPLS) tunneling, 
802.1ad termination, and so on. 

CORD’s virtualized BNG, called a vir-
tual router (vRouter), is implemented as an 
ONOS-hosted control program that manages 
flows through the switching fabric on behalf of 
subscribers. No attempt is made to reproduce 
many of the auxiliary functions historically bun-
dled into a BNG device, although in some cases, 
that functionality is provided by another service 
(e.g., vOLT authenticates subscribers and vSG 
implements per-subscriber functionality).

In general, it is more accurate to think of 
vRouter as providing each subscriber with their 
own “private virtual router,” where the underly-
ing fabric can be viewed as a distributed router 
with line cards and backplanes instantiated by 
bare-metal switches. The vRouter control pro-
gram then routes between the attached per-sub-
scriber subnets. It also peers with legacy routers 
(e.g., advertising BGP routes).

Our approach to vRouter highlights an exam-
ple of refactoring. Historically, BNG is respon-
sible for authenticating the user as well as 
subscriber management, but those functions have 
been unbundled and moved to vOLT and vSG, 
respectively. This is because subscribers have to 
be authenticated before accessing vSG, which 
used to reside in the home but has now moved 
into the CO.

End-to-End Packet Flow

We conclude by sketching a subscriber’s packet 
flow through the CORD, assuming the subscrib-
er already has an account. When the subscriber 
powers up the home router, an 802.1x authen-
tication packet is sent over GPON to the CO. 
Upon arrival at a GPON I/O blade port, the 
packet is passed up (through ONOS) to the 
vOLT control program, which authenticates the 
subscriber using an account registry like RADI-
US. Once authenticated, vOLT assigns VLAN 
tags to the subscriber and installs the appropriate 
flow rules in the I/O blade and switching fab-
ric (via ONOS), asks vSG to spin up a container 
for that subscriber, and binds that container to 
the VLAN. vSG, in turn, requests a routable IP 

address from vRouter, which causes vRouter (via 
ONOS) to install the flow rules in the switch-
ing fabric and software switches needed to route 
packets to/from that subscriber’s container. 

Once set up, packets flow from the home 
router over a VLAN to the subscriber’s con-
tainer; those packets are processed according to 
whatever bundle is associated with the subscrib-
er’s account (and configured into the container), 
and then forwarded on to the Internet using the 
assigned source IP address. 

This description is obviously high-level, gloss-
ing over both many low-level details about each 
component (e.g., how VLAN tags are assigned, 
precisely what flow rules are installed, the exact 
composition of functions in each container) and 
the mechanisms by which the various agents 
(ONOS, OpenStack, Docker, vOLT, vSG, 
vRouter) are actually plumbed together. More 
information on the former is available in a set of 
engineering design notes [8]; more information 
on the latter is given in the next section.

Service Framework
This section focuses on the second step in re-ar-
chitecting the CO as a data center: orchestrat-
ing the software elements resulting from the first 
step (plus any additional cloud services that the 
operator wants to run there) into a functioning 
and controllable end-to-end system. 

Benefits and Challenges

Disaggregating hardware devices and replacing 
them with merchant silicon and software running 
in VMs is a necessary first step, but it is not suffi-
cient. Just as all the devices in a hardware-based 
CO must be wired together, their software coun-
terparts must also be managed as a collective. 
This process is often called service orchestration, 
but if network operators are to enjoy the same 
agility as cloud providers, the abstractions that 
underlie the orchestration framework must fully 
embrace:
•	The elastic scale-out of the resulting virtual-

ized functionality
•	The composition of the resulting disaggre-

gated functionality
A model that simply “chains” VMs together as 
though it is operating on their hardware-based 
counterparts will not achieve either goal.

Our approach is to adopt everything as a 
service (XaaS) as a unifying principle [7]. This 
brings the disparate functionality introduced by 
virtualizing the hardware devices under a sin-
gle coherent model. The control functions run 
as scalable services (these functions run on top 
of ONOS), the data plane functions run as scal-
able services (these functions scale across a set 
of VMs), the commodity infrastructure is itself 
managed as a service (this service is commonly 
known by the generic name IaaS), and various 
other global cloud services running in the CO are 
also managed as scalable services (as outlined 
below, CORD includes a content distribution 
network, CDN, as an illustrative example of a 
conventional cloud service).

Scalable Services, Not Virtual Devices

While the terms vOLT, vSG, and vRouter are 
used to refer to the virtualized counterparts of 
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the three physical devices, they are all packaged 
as services. While we could name these services 
according to their legacy counterparts, the new 
architecture no longer requires functionality to 
be bundled along the same boundaries as before. 
For this reason, it is more intuitive to think of the 
virtualization process outlined above as resulting 
in three generic, multi-tenant services:
•	vOLT is a control program running on 

ONOS. It implements access as a service, 
where each tenant acquires a subscriber 
VLAN.

•	vSG is a data plane function scaled across a 
set of containers. It implements subscriber 
as a service, where each tenant acquires a 
subscriber bundle.

•	vRouter is a control program running on 
ONOS. It implements Internet as a service, 
where each tenant acquires a routable sub-
net.
Our reference implementation adds a CDN 

— itself a scalable cloud service deployed 
throughout the operator’s network, including 
caches in the CO — to the mix. This gives us an 
example of the three kinds of services outlined in 
the introduction: a cloud service (CDN), a data 
plane service (vSG), and two control plane ser-
vices (vOLT and vRouter). Moreover, we have 
disaggregated the BNG: it is subsumed by a com-
bination of vOLT, vSG, vRouter, and the under-
lying switching fabric.

This results in the legacy CO depicted in Fig. 
3 being re-architected into the service graph 
shown in Fig. 4. To illustrate CORD’s generality 
as a configurable platform, Fig. 4 also includes 
a vG.Fast service to represent a second access 
technology. 

Each CORD service is multi-tenant and 
provides some service abstraction, in the same 
sense that a conventional cloud storage service 
provides a “volume” abstraction and a NoSQL 
DB service provides a “KeyStore” abstraction. 
As such, we read the service graph in Fig. 4 as: 
“a subscriber acquires a subscriber VLAN from 
vOLT, which in turn acquires a subscriber bundle 
from vSG, which finally acquires a routable subnet 
from vRouter.”

It is also accurate to say that the subscriber 
is a tenant of the service graph as a whole. Prag-
matically, this means that once the service graph 
shown in Fig. 4 is instantiated in CORD, the sub-
scriber is able to control his or her subscription 
(e.g., set the parental control feature to disallow 
access to certain sites) by invoking operations 
on the subscriber object, without any awareness 
of which service implements which feature. The 

structure imposed by the XOS abstractions maps 
such a request onto the right set of components.

The service graph shown in Fig. 4 is simplified 
to focus on the services that provide direct value 
to end users. There are also a collection of build-
ing block services on which the services in Fig. 4 
depend, including ONOS (e.g., both vOLT and 
vRouter are tenants of ONOS) and a monitoring 
service (e.g., Ceilometer on Fig. 2) that collects 
and aggregates meters from each hardware and 
software element in CORD.

Layers of Abstraction

The service graph shown in Fig. 4 represents 
the high-level specification a network operator 
provides, a so-called service control plane, where 
this specification is mapped onto the underlying 
servers, switches, and I/O blades. This mapping 
is the consequence of a set of nested abstractions 
that CORD layers on top of the building block 
components shown in Fig. 2. Working top down, 
CORD defines the following abstractions.

Service Graph: Represents dependency rela-
tionships among a set of services (see next). 
CORD models service composition as a tenancy 
relationship between a provider service and a 
tenant service. Service tenancy is anchored in a 
tenant principal (e.g., subscriber).

Service: Represents an elastically scalable, 
multi-tenant program, including an interface 
to instantiate, control, and scale functionality. 
CORD models a service as a service controller 
that exports a multi-tenant interface and a slice 
(see next) that contains an elastically scalable set 
of service instances.

Slice: Represents a POD-wide resource con-
tainer in which services execute, including a spec-
ification of how those resources are embedded in 
the underlying infrastructure. CORD models a 
slice as a set of service instances (VMs or contain-
ers) and a set of VNs. Instances are provided by 
the underlying IaaS components (OpenStack and 
Docker), while VNs are implemented by ONOS 
(see next).

Virtual Network: Represents a communication 
interconnect among a set of instances. CORD 
supports several VN types, including Private 
(connects instances within a Slice), Access_Direct 
(used by a tenant service to access a provider 
service by directly addressing each instance in 
the provider service), and Access_Indirect (used 
by a tenant service to access a provider service by 
addressing the service as a whole). The latter two 
support service composition.

A pair of ONOS-hosted control applica-
tions implements CORD VNs. The first, called 
VTN, installs flow rules in the OvS running on 
each server to implement a service composition 
overlay, using VxLAN tunnels and a custom 
OvS pipeline. The second, called Fabric Con-
trol, implements aggregate flows between servers 
across the layer 2/3 (L2/L3) leaf-spine switching 
fabric (i.e., the hardware underlay), and works 
with other ONOS applications to interface with 
downstream access devices and upstream metro 
routers.

Looking at Fig. 4 through the lens of NFV, 
each service in CORD corresponds to a virtual-
ized network function (VNF) in the NFV archi-
tecture [9]. How a sequence of such VNFs (a 

Figure 4. CORD service graph, including two access services: vOLT and  
vG.Fast.
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service chain) maps onto a sequence of compute 
instances (VMs or containers) depends on three 
things:
•	Whether the service is implemented on the 

network control plane or in the network 
data plane

•	How each service maps its tenants onto one 
or more instances

•	The type of VN interconnect instances
As a consequence, a linear chain of instances is 
just one of many possible outcomes of service 
composition in CORD. Our experience with 
a wide collection of services that span the full 
NFV, SDN, and cloud space is that a more gen-
eral model of service composition is required, 
and this experience informs CORD’s design.

Security Architecture

The XOS abstractions effectively layer a service 
control plane on top of a collection of micro-ser-
vices, and in doing so, provide explicit support 
for multiple domains of trust. This makes it 
possible to mediate trust (verify a chain of trust 
through a sequence of components) and apply 
the principle of least privilege (support a fine-
grain separation of privilege):
•	XOS minimizes the trusted code base by 

running as many management services as 
possible in isolated IaaS-provided slices 
rather than on cluster head nodes.

•	XOS mediates trust by requiring all ser-
vice-to-service and operator-to-service con-
trol operations to pass through a logically 
centralized XOS control point, where the 
security policy is enforced.

•	XOS supports least privilege on the control 
plane by providing a role-based access con-
trol mechanism that associates fine-grained 
privileges with an extensible set of roles.

•	XOS supports least privilege on the data 
plane by allowing services to control the 
network(s) through which their instanc-
es are accessed, rather than interconnect 
services using publicly routable Internet 
addresses.

•	XOS makes it possible to verify an end-to-
end chain of trust by modeling all services 
as multi-tenant, with tenants corresponding 
to either authenticated users or other ser-
vices. 

Concluding Remarks
CORD is a revolutionary effort to transform leg-
acy central offices in the telco network. In the 
re-architected CO, closed and proprietary hard-
ware is replaced with software running on com-
modity servers and switches. This software, in 
turn, is managed and orchestrated as a collection 
of scalable services. In doing so, CORD’s goal is 
to demonstrate the feasibility of a CO that enjoys 
both the CAPEX and OPEX benefits of com-
modity infrastructure, and the agility of modern 
cloud providers. 

The reference implementation of CORD is 
both sufficiently complete to support field tri-
als, and general enough to be applicable to 
many telco and cable applications, including spe-
cific implementations that address verticals in 
this large market. For example, in addition to 
the residential use case described in this article 

(R-CORD), there is a CORD implementation 
targeted at mobile users (M-CORD) and another 
targeted at enterprise users (E-CORD). Specifi-
cations and software for the reference implemen-
tations are available at http://opencord.org/.
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