
IEEE Communications Magazine • October 20162 0163-6804/16/$25.00 © 2016 IEEE

Abstract

CORD is a new design of a telco central office
that replaces closed and proprietary hardware
with software running on commodity servers,
switches, and access devices. It allows network
operators to benefit from both the economies of
scale (infrastructure constructed from a few com-
modity building blocks) and agility (the ability to
rapidly deploy and elastically scale services) that
commodity cloud providers enjoy today. This
article introduces the CORD architecture and
describes an open reference implementation of
CORD that is available for evaluation.

Challenges
Network operators face significant challeng-
es meeting bandwidth demands and providing
enhanced services. For example, AT&T has seen
data traffic increase by 100,000 percent in the
last eight years, and plans are now underway to
roll out ultra-fast fiber and access to 100 cities
across the United States [1]. At the same time,
introducing a new feature often takes months
(waiting for the next vendor product release) and
sometimes years (waiting for the standardization
process to run its course).

In response, network operators are looking
for ways to benefit from both the economies of
scale (infrastructure constructed from a few com-
modity building blocks) and agility (the ability to
rapidly deploy and elastically scale services) that
commodity cloud providers enjoy.

Cloud economies and agility are especially
needed at the edge of the operator network — in
the telco central office (CO) — which contains
a diverse collection of purpose-built devices,
assembled over 50 years, with little coherent or
unifying architecture. For example, AT&T cur-
rently operates 4700 COs, some of which con-
tain up to 300 unique hardware appliances. This
makes them a source of significant capital expen-
diture (CAPEX) and operational expenditure
(OPEX), as well as a barrier to rapid innovation.

This article describes CORD, an architecture
for the telco CO (or cable head-end) that com-
bines software-defined networking (SDN), net-
work functions virtualization (NFV), and elastic
cloud services to build cost-effective, agile access
networks. In addition to introducing the architec-
ture, this article also outlines an open reference

implementation of CORD that is available for
evaluation.

Introducing CORD
CORD re-architects the CO as a data center,
and in doing so unifies three related but distinct
technology trends.

SDN: Separates the network’s control and
data planes and makes the control plane pro-
grammable. This simplifies network infrastruc-
ture and permits inexpensive white-box switches
that can be built using merchant silicon.

NFV: Moves the data plane from hardware
devices to virtual machines (VMs) running on
commodity servers. This replaces high-margin
devices with commodity hardware and permits
more agile software-based orchestration.

Cloud: Defines best practices in scalable
services, leveraging software-based solutions,
micro-services, virtualized commodity platforms,
elastic scaling, and service composition. This
allows network operators to innovate more rap-
idly.

In unifying these three trends, CORD goes
beyond what each technology contributes in iso-
lation:
•	It uses SDN not only to simplify the net-

working infrastructure, but also as a source
of innovative services that can be offered to
customers.

•	It not only supports legacy network func-
tions in VMs, but also disaggregates func-
tionality into finer-grained elements.

•	It not only supports conventional SaaS, but
also extends the cloud paradigm to include
fiber to the home and wireless access as
elastic access as a service.
In short, CORD’s goal is to not only replace

today’s purpose-built hardware devices with their
more agile software-based counterparts, but also
make the CO an integral part of every telco’s
overall cloud strategy, enabling a rich collec-
tion of services, including access for residential,
mobile, and enterprise customers.

Commodity Hardware

CORD runs on commodity servers and white-box
switches, coupled with disaggregated packaging
of media access technologies. These hardware
elements are then organized into a rack-able
unit, called a POD, that is suitable for deploy-

Central Office
Re-Architected as a Data Center

Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy Bavier, Saurav Das, Jonathan Hart, Guru Palukar, and William Snow

SDN Use Cases for Service Provider Networks

CORD is a new design
of a telco central office
that replaces closed and
proprietary hardware with
software running on com-
modity servers, switches,
and access devices. It
allows network operators
to benefit from both the
economies of scale (infra-
structure constructed
from a few commodity
building blocks) and
agility (the ability to rap-
idly deploy and elastically
scale services) that com-
modity cloud providers
enjoy today.

Larry Peterson, Ali Al-Shabibi,Scott Baker, Andy Bavier, Jonathan Hart, Guru Palukar, and William Snow are with Open Networking Laboratory; Saurav Das is with
the Open Networking Foundation; Tom Anshutz is with AT&T.

IEEE Communications Magazine • October 2016 3

ment in a telco CO.
We have settled on a particular configura-

tion for an initial reference implementation of
CORD. It includes:
•	Servers: Open Compute Project

(OCP)-qualified QUANTA STRATOS-
S210-X12RS-IU servers, each configured
with 128 GB of RAM, 2  300 GB HDDs,
and a 40GE dual-port NIC.

•	Switches: OCP-qualified and OpenFlow-en-
abled Accton 6712 switches, each config-
ured with 32  40GE ports, and doubling as
both leaf and spine switches in the CORD
fabric.

•	I/O Blades: OCP-contributed AT&T Open
GPON — NFV OLT Line Card. Celesti-
ca-manufactured Optical Line Termination
(OLT) “pizza boxes” that include merchant
silicon OLT MAC chips from Microsemi.
This is a 1u-blade that includes 48  2.5 Gb/s
gigabit passive optical network (GPON)
interfaces and 6  40GE uplinks [2].
The servers, switches, and OLT blades are

assembled into two virtual racks (single physi-
cal rack) as illustrated in Fig. 1. The servers and
OLT blades are interconnected by a leaf-spine
switching fabric, consisting of two spine switches
and two leaf (top-of-rack) switches per virtual
rack. Also shown in the figure, Leaf-2 is connect-
ed to an upstream router, and the OLT blades
are connected via GPON to ONTs and home
routers.

The servers run Ubuntu LTS 14.04 and
include Open vSwitch (OvS). The switches run
the open source Atrium software stack [3], which
includes Open Network Linux, the Indigo Open-
Flow Agent (OF 1.3), and Broadcom’s Open-
Flow Data Plane Abstraction (OF-DPA), layered
on top of Broadcom merchant silicon.

Figure 1 shows just one of many possible
hardware configurations. For example, the leaf
switches have sufficient capacity to support up
to 24 dual-port servers per rack, and the spine
switches have sufficient capacity to support up
to 16 racks. At the other end of the spectrum, it
is also possible to configure a “micro POD” that
includes only leaf switches and fits in a partial
rack.

Figure 1 also shows two OLT blades, but
any access technology can be incorporated into
CORD. This includes other residential technolo-
gies (e.g., 10GPON, G.Fast, DOCSIS), as well as
broadband base units (BBUs) connecting mobile
networks and carrier Ethernet connecting enter-
prises.

Software Building Blocks

With respect to software, CORD’s reference
implementation exploits four open source proj-
ects, as depicted in Fig. 2.

OpenStack [4] is the cluster management
suite that provides the core Internet as a service
(IaaS) capability, and is responsible for creat-
ing and provisioning VMs and virtual networks
(VNs).

Docker [5] provides a container-based means
to deploy and interconnect services. It also plays
a role in deploying CORD itself (e.g., the other
management elements are instantiated in Docker
containers).

ONOS [6] is the network operating system
that manages both software switches and the
physical switching fabric. It hosts a collection of
control applications that implement subscriber
services and manage the switching fabric.

XOS [7] is a framework for assembling and
composing services. It unifies infrastructure ser-
vices (provided by OpenStack), control plane ser-
vices (provided by ONOS), and any data plane or
cloud services (running in VMs or containers).

To allow for the widest possible collection of
services, the reference implementation supports
services running in VMs, in containers running
directly on bare metal, and in containers nested
inside VMs.

ONOS plays two roles in CORD. It both
interconnects VMs (this includes implementing
VNs and managing flows across the switching
fabric) and provides a platform for hosting con-
trol programs that implement CORD services.
Two examples of the latter are described in the
next section (vOLT and vRouter).

Transformation Process

Given this hardware/software foundation, trans-
forming today’s CO into CORD is a two-step
process. The first step is to disaggregate and
virtualize the devices, that is, turn each pur-
pose-built hardware device into its software
counterpart running on commodity hardware.

The second step is to provide a framework
into which the resulting disaggregated elements
can be plugged, producing a coherent end-to-
end system. This framework defines the unifying
abstractions that forge this collection of hard-

Figure 1. Target hardware POD built from commodity servers, I/O blades,
and switches.

1 Gb/s
management network

Leaf-2

Spine-2Spine-1

Leaf-4
Compute-2
Compute-4

Leaf-1
Leaf-3

Compute-1
Compute-3

OLT-1
OLT-2

40Gb/s
3x40Gb/s

Internet
router

Home
router

Figure 2. Open source software components in CORD. XOS assembles
multi-tenant services, ONOS hosts control applications, and OpenStack/
Docker manage compute instances. Specific services and control apps are
described in later sections.

Monitoring
as a serviceCDN

VTN

Ceilometer vSG vCDN

OpenStack/Docker
Fabric
control

Multicast
control vOLT

ONOS

vRouter

Internet
as a service

Subscriber
as a service

Access
as a service

XOS

IEEE Communications Magazine • October 20164

ware and software elements into a scalable and
agile system. The following two sections describe
these two steps to re-architect the CO in greater
detail.

Disaggregating Legacy Devices
The first step involves disaggregating the exist-
ing hardware devices, transforming each legacy
device into its commodity hardware plus software
service counterpart. This section walks through
the process for the legacy devices highlighted in
Fig. 3, which includes optical line termination
(OLT), customer premises equipment (CPE),
and broadband network gateways (BNGs). We
do not virtualize the Ethernet aggregation switch,
per se, but the switching fabric in Fig. 1, under
the control of ONOS, effectively replaces it.

For the sake of concreteness, this article
focuses on the residential use case (i.e., GPON
technology and the corresponding OLT device).
However, the approach is equally applicable to
other access technologies, and CORD is a gen-
eral service delivery platform that also supports
mobile and enterprise customers.

Benefits and Challenges

OLT is a large capital investment, involving
racks of closed and proprietary hardware that
terminate access for tens of thousands of sub-
scribers. Virtualizing OLT is especially chal-
lenging because, unlike network appliances that
are actually implemented by software running
on vendor-branded commodity servers, OLT is
implemented primarily in hardware. CPE is cur-
rently distributed to tens of thousands of cus-
tomer sites per CO, making them a significant
operational burden. This is especially true when
a service upgrade requires a hardware upgrade.
BNGs are expensive and complex routers that
have historically aggregated much of the func-
tionality provided by a CO, making them difficult
to evolve in an agile and cost-effective way.

Disaggregating and virtualizing each physical
device results in three elements: (1) merchant
silicon, including both commodity servers and
white-box switches; (2) a control plane function,
to which we refer as the SDN element; and (3)
a data plane function, to which we refer as the
NFV element. Both NFV and SDN elements are
implemented by software running on commodity
servers, where it is considered an NFV element
if packet processing is entirely in software, and
it is considered an SDN element if that software
also controls commodity switches and I/O blades
through an open interface like OpenFlow. Said
another way, NFV elements run on commodity
servers, while SDN elements run on commodity
servers but also control commodity switches.

The rest of this section shows how this pat-

tern is applied to OLT, CPE, and BNG, resulting
in virtual incarnations of each physical device.
It is not a goal to preserve a one-to-one map-
ping between physical and virtual devices, and
in fact, the opposite is true. Virtualizing legacy
hardware provides an opportunity to disaggre-
gate and refactor their functionality, as illustrat-
ed throughout this section.

Disaggregating/Virtualizing the OLT
OLT terminates the optical link in the CO, with
each physical termination point aggregating a
set of subscriber connections. The first challenge
is to create an I/O blade with the PON OLT
medium access control (MAC), and to this end,
AT&T has worked with the Open Compute Proj-
ect to develop an open specification for an Open
GPON OLT in the form of a 1RU “pizza box.”
This box includes the merchant silicon GPON
MAC chips under control of a remote control
program via OpenFlow.

These boxes are then brought under the same
SDN-based control paradigm as the white-box
based switching fabric. The resulting control pro-
gram, called virtual OLT (vOLT), runs on top of
ONOS, and implements all other functionality
normally contained in a legacy OLT chassis (e.g.,
GPON protocol management, 802.1ad-compli-
ant VLAN bridging). That is, vOLT implements
authentication on a per-subscriber basis, estab-
lishes and manages VLANs connecting the sub-
scriber’s devices to the CO switching fabric, and
manages other control plane functions of the
OLT.

Disaggregating/Virtualizing the CPE
CPE, including both the GPON-terminating
ONT and also a “home router” or “residential
gateway,” is installed in the customer’s prem-
ises. They often run a collection of essential
functions such as Dynamic Host Configuration
Protocol (DHCP) and Network Address Trans-
lation (NAT) and optional services (e.g., firewall,
parental control, VoIP) on behalf of residential
subscribers. More sophisticated enterprise func-
tions are also common (e.g., WAN acceleration,
IDS), but this article focuses on the residential
use case. By extending the capabilities of CPE
in the cloud, new value-added services as well as
customer care capabilities can be provided where
they could not before because of limitations in
the hardware.

Our virtualized version of CPE, called virtual
subscriber gateway (vSG), also runs a bundle of
subscriber-selected functions, but it does so on
commodity hardware located in the CO rather
than at the customer’s premises. There is still a
device in the home (to which we still refer as the
CPE), but it can be simplified, with some of the
functionality that ran on the original CPE moved
into the CO and running in a VM on commodi-
ty servers. In other words, the “customer LAN”
includes a remote VM that resides in the CO,
effectively providing every subscriber with direct
ingress into the telco’s cloud.

CORD permits a wide range of implemen-
tation choices for subscriber bundles, including
a full VM, a lightweight container, or a chain
of lightweight containers. Our reference imple-
mentation uses a container-per-subscriber model,

Figure 3. Legacy central office, including three devices (CPE, OLT, BNG) to
be virtualized and disaggregated.

BNGOLTCPE Backbone
network

ETH
AGG

Residence Central office

ONU

IEEE Communications Magazine • October 2016 5

and gives subscribers the ability to select from a
small collection of features (e.g., DHCP, NAT,
firewall, uplink/downlink speeds, parental fil-
tering). Each feature is then controlled by con-
figuring the container bound to the subscriber,
for example, using Linux mechanisms like ipt-
ables, dnsmasq, and tc. Experiments show this
approach conservatively supports 1000 subscrib-
ers per server, with round-trip latency through
the CORD POD well under 1 ms.

Disaggregating/Virtualizing the BNG
A BNG is one of the more complex and expensive
devices in a CO, providing the means through
which subscribers connect to the public Internet.
It minimally manages a routable IP address on
behalf of each subscriber, and provides that sub-
scriber with some type of network connectivity.
In practice, however, the BNG also bundles a
large collection of value-added features and func-
tions, including quality of service (QoS), shaping
and policing, virtual private networks (VPNs),
generic routing encapsulation (GRE) tunneling,
multiprotocol label switching (MPLS) tunneling,
802.1ad termination, and so on.

CORD’s virtualized BNG, called a vir-
tual router (vRouter), is implemented as an
ONOS-hosted control program that manages
flows through the switching fabric on behalf of
subscribers. No attempt is made to reproduce
many of the auxiliary functions historically bun-
dled into a BNG device, although in some cases,
that functionality is provided by another service
(e.g., vOLT authenticates subscribers and vSG
implements per-subscriber functionality).

In general, it is more accurate to think of
vRouter as providing each subscriber with their
own “private virtual router,” where the underly-
ing fabric can be viewed as a distributed router
with line cards and backplanes instantiated by
bare-metal switches. The vRouter control pro-
gram then routes between the attached per-sub-
scriber subnets. It also peers with legacy routers
(e.g., advertising BGP routes).

Our approach to vRouter highlights an exam-
ple of refactoring. Historically, BNG is respon-
sible for authenticating the user as well as
subscriber management, but those functions have
been unbundled and moved to vOLT and vSG,
respectively. This is because subscribers have to
be authenticated before accessing vSG, which
used to reside in the home but has now moved
into the CO.

End-to-End Packet Flow

We conclude by sketching a subscriber’s packet
flow through the CORD, assuming the subscrib-
er already has an account. When the subscriber
powers up the home router, an 802.1x authen-
tication packet is sent over GPON to the CO.
Upon arrival at a GPON I/O blade port, the
packet is passed up (through ONOS) to the
vOLT control program, which authenticates the
subscriber using an account registry like RADI-
US. Once authenticated, vOLT assigns VLAN
tags to the subscriber and installs the appropriate
flow rules in the I/O blade and switching fab-
ric (via ONOS), asks vSG to spin up a container
for that subscriber, and binds that container to
the VLAN. vSG, in turn, requests a routable IP

address from vRouter, which causes vRouter (via
ONOS) to install the flow rules in the switch-
ing fabric and software switches needed to route
packets to/from that subscriber’s container.

Once set up, packets flow from the home
router over a VLAN to the subscriber’s con-
tainer; those packets are processed according to
whatever bundle is associated with the subscrib-
er’s account (and configured into the container),
and then forwarded on to the Internet using the
assigned source IP address.

This description is obviously high-level, gloss-
ing over both many low-level details about each
component (e.g., how VLAN tags are assigned,
precisely what flow rules are installed, the exact
composition of functions in each container) and
the mechanisms by which the various agents
(ONOS, OpenStack, Docker, vOLT, vSG,
vRouter) are actually plumbed together. More
information on the former is available in a set of
engineering design notes [8]; more information
on the latter is given in the next section.

Service Framework
This section focuses on the second step in re-ar-
chitecting the CO as a data center: orchestrat-
ing the software elements resulting from the first
step (plus any additional cloud services that the
operator wants to run there) into a functioning
and controllable end-to-end system.

Benefits and Challenges

Disaggregating hardware devices and replacing
them with merchant silicon and software running
in VMs is a necessary first step, but it is not suffi-
cient. Just as all the devices in a hardware-based
CO must be wired together, their software coun-
terparts must also be managed as a collective.
This process is often called service orchestration,
but if network operators are to enjoy the same
agility as cloud providers, the abstractions that
underlie the orchestration framework must fully
embrace:
•	The elastic scale-out of the resulting virtual-

ized functionality
•	The composition of the resulting disaggre-

gated functionality
A model that simply “chains” VMs together as
though it is operating on their hardware-based
counterparts will not achieve either goal.

Our approach is to adopt everything as a
service (XaaS) as a unifying principle [7]. This
brings the disparate functionality introduced by
virtualizing the hardware devices under a sin-
gle coherent model. The control functions run
as scalable services (these functions run on top
of ONOS), the data plane functions run as scal-
able services (these functions scale across a set
of VMs), the commodity infrastructure is itself
managed as a service (this service is commonly
known by the generic name IaaS), and various
other global cloud services running in the CO are
also managed as scalable services (as outlined
below, CORD includes a content distribution
network, CDN, as an illustrative example of a
conventional cloud service).

Scalable Services, Not Virtual Devices

While the terms vOLT, vSG, and vRouter are
used to refer to the virtualized counterparts of

Disaggregating hard-

ware devices and

replacing them with

merchant silicon and

software running in vir-

tual machines is a nec-

essary first step, but it is

not sufficient. Just as all

the devices in a hard-

ware-based CO must

be wired together, their

software counterparts

must also be managed

as a collective.

IEEE Communications Magazine • October 20166

the three physical devices, they are all packaged
as services. While we could name these services
according to their legacy counterparts, the new
architecture no longer requires functionality to
be bundled along the same boundaries as before.
For this reason, it is more intuitive to think of the
virtualization process outlined above as resulting
in three generic, multi-tenant services:
•	vOLT is a control program running on

ONOS. It implements access as a service,
where each tenant acquires a subscriber
VLAN.

•	vSG is a data plane function scaled across a
set of containers. It implements subscriber
as a service, where each tenant acquires a
subscriber bundle.

•	vRouter is a control program running on
ONOS. It implements Internet as a service,
where each tenant acquires a routable sub-
net.
Our reference implementation adds a CDN

— itself a scalable cloud service deployed
throughout the operator’s network, including
caches in the CO — to the mix. This gives us an
example of the three kinds of services outlined in
the introduction: a cloud service (CDN), a data
plane service (vSG), and two control plane ser-
vices (vOLT and vRouter). Moreover, we have
disaggregated the BNG: it is subsumed by a com-
bination of vOLT, vSG, vRouter, and the under-
lying switching fabric.

This results in the legacy CO depicted in Fig.
3 being re-architected into the service graph
shown in Fig. 4. To illustrate CORD’s generality
as a configurable platform, Fig. 4 also includes
a vG.Fast service to represent a second access
technology.

Each CORD service is multi-tenant and
provides some service abstraction, in the same
sense that a conventional cloud storage service
provides a “volume” abstraction and a NoSQL
DB service provides a “KeyStore” abstraction.
As such, we read the service graph in Fig. 4 as:
“a subscriber acquires a subscriber VLAN from
vOLT, which in turn acquires a subscriber bundle
from vSG, which finally acquires a routable subnet
from vRouter.”

It is also accurate to say that the subscriber
is a tenant of the service graph as a whole. Prag-
matically, this means that once the service graph
shown in Fig. 4 is instantiated in CORD, the sub-
scriber is able to control his or her subscription
(e.g., set the parental control feature to disallow
access to certain sites) by invoking operations
on the subscriber object, without any awareness
of which service implements which feature. The

structure imposed by the XOS abstractions maps
such a request onto the right set of components.

The service graph shown in Fig. 4 is simplified
to focus on the services that provide direct value
to end users. There are also a collection of build-
ing block services on which the services in Fig. 4
depend, including ONOS (e.g., both vOLT and
vRouter are tenants of ONOS) and a monitoring
service (e.g., Ceilometer on Fig. 2) that collects
and aggregates meters from each hardware and
software element in CORD.

Layers of Abstraction

The service graph shown in Fig. 4 represents
the high-level specification a network operator
provides, a so-called service control plane, where
this specification is mapped onto the underlying
servers, switches, and I/O blades. This mapping
is the consequence of a set of nested abstractions
that CORD layers on top of the building block
components shown in Fig. 2. Working top down,
CORD defines the following abstractions.

Service Graph: Represents dependency rela-
tionships among a set of services (see next).
CORD models service composition as a tenancy
relationship between a provider service and a
tenant service. Service tenancy is anchored in a
tenant principal (e.g., subscriber).

Service: Represents an elastically scalable,
multi-tenant program, including an interface
to instantiate, control, and scale functionality.
CORD models a service as a service controller
that exports a multi-tenant interface and a slice
(see next) that contains an elastically scalable set
of service instances.

Slice: Represents a POD-wide resource con-
tainer in which services execute, including a spec-
ification of how those resources are embedded in
the underlying infrastructure. CORD models a
slice as a set of service instances (VMs or contain-
ers) and a set of VNs. Instances are provided by
the underlying IaaS components (OpenStack and
Docker), while VNs are implemented by ONOS
(see next).

Virtual Network: Represents a communication
interconnect among a set of instances. CORD
supports several VN types, including Private
(connects instances within a Slice), Access_Direct
(used by a tenant service to access a provider
service by directly addressing each instance in
the provider service), and Access_Indirect (used
by a tenant service to access a provider service by
addressing the service as a whole). The latter two
support service composition.

A pair of ONOS-hosted control applica-
tions implements CORD VNs. The first, called
VTN, installs flow rules in the OvS running on
each server to implement a service composition
overlay, using VxLAN tunnels and a custom
OvS pipeline. The second, called Fabric Con-
trol, implements aggregate flows between servers
across the layer 2/3 (L2/L3) leaf-spine switching
fabric (i.e., the hardware underlay), and works
with other ONOS applications to interface with
downstream access devices and upstream metro
routers.

Looking at Fig. 4 through the lens of NFV,
each service in CORD corresponds to a virtual-
ized network function (VNF) in the NFV archi-
tecture [9]. How a sequence of such VNFs (a

Figure 4. CORD service graph, including two access services: vOLT and
vG.Fast.

Residential
subscribers

Controller

vRouterController

vOLT

Controller

vSG

Controller

vCDN

Controller

vG.Fast

IEEE Communications Magazine • October 2016 7

service chain) maps onto a sequence of compute
instances (VMs or containers) depends on three
things:
•	Whether the service is implemented on the

network control plane or in the network
data plane

•	How each service maps its tenants onto one
or more instances

•	The type of VN interconnect instances
As a consequence, a linear chain of instances is
just one of many possible outcomes of service
composition in CORD. Our experience with
a wide collection of services that span the full
NFV, SDN, and cloud space is that a more gen-
eral model of service composition is required,
and this experience informs CORD’s design.

Security Architecture

The XOS abstractions effectively layer a service
control plane on top of a collection of micro-ser-
vices, and in doing so, provide explicit support
for multiple domains of trust. This makes it
possible to mediate trust (verify a chain of trust
through a sequence of components) and apply
the principle of least privilege (support a fine-
grain separation of privilege):
•	XOS minimizes the trusted code base by

running as many management services as
possible in isolated IaaS-provided slices
rather than on cluster head nodes.

•	XOS mediates trust by requiring all ser-
vice-to-service and operator-to-service con-
trol operations to pass through a logically
centralized XOS control point, where the
security policy is enforced.

•	XOS supports least privilege on the control
plane by providing a role-based access con-
trol mechanism that associates fine-grained
privileges with an extensible set of roles.

•	XOS supports least privilege on the data
plane by allowing services to control the
network(s) through which their instanc-
es are accessed, rather than interconnect
services using publicly routable Internet
addresses.

•	XOS makes it possible to verify an end-to-
end chain of trust by modeling all services
as multi-tenant, with tenants corresponding
to either authenticated users or other ser-
vices.

Concluding Remarks
CORD is a revolutionary effort to transform leg-
acy central offices in the telco network. In the
re-architected CO, closed and proprietary hard-
ware is replaced with software running on com-
modity servers and switches. This software, in
turn, is managed and orchestrated as a collection
of scalable services. In doing so, CORD’s goal is
to demonstrate the feasibility of a CO that enjoys
both the CAPEX and OPEX benefits of com-
modity infrastructure, and the agility of modern
cloud providers.

The reference implementation of CORD is
both sufficiently complete to support field tri-
als, and general enough to be applicable to
many telco and cable applications, including spe-
cific implementations that address verticals in
this large market. For example, in addition to
the residential use case described in this article

(R-CORD), there is a CORD implementation
targeted at mobile users (M-CORD) and another
targeted at enterprise users (E-CORD). Specifi-
cations and software for the reference implemen-
tations are available at http://opencord.org/.

Acknowledgments
Many people have contributed to CORD, includ-
ing Charles Chan, Flavio Castro, Matteo Scando-
lo, Masayoshi Kabayashi, Hyunsun Moon, Zack
Williams, Don Newton, David Bainbridge, Zsolt
Haraszti, Srikanth Vavilapalli, Marc Fiuczynski,
and Sapan Bhatia.

References

[1] K. Prabhu, “Delivering a Software-Based Network Infrastructure,” AT&T
Labs, Oct. 2015.

[2] T. Anschutz and R. Clark, “AT&T Open GPON — NFV OLT Line Card Spec-
ification,” Open Compute Project, http://www.opencompute.org/wiki/
Telcos, Mar. 2016.

[3] “Atrium: A Complete SDN Distribution from ONF,” https://github.com/
onfsdn/atrium-docs/wiki, visited June 2016.

[4] “OpenStack: Open Source Cloud Computing Software,” https://www.
openstack.org/, visited June 2016.

[5] “Docker: Build, Ship, Run Any App, Anywhere,” https://www.docker.com/,
visited June 2016.

[6] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” HotSDN
2014, Aug. 2014.

[7] L. Peterson et al., “XOS: An Extensible Cloud Operating System,” ACM
BigSystems 2015, June 2015.

[8] “CORD: Re-inventing Central Offices for Efficiency and Agility,” http://
opencord.org, visited June 2016.

[9] “Network Functions Virtualization — An Introductory White Paper,” SDN
and OpenFlow World Congress, Oct. 2012.

Biographies

Larry Peterson (llp@cs.princeton.edu) is chief architect at the Open Network-
ing Lab and the Robert E. Kahn Professor of Computer Science, Emeritus,
at Princeton University. He is a recipient of the IEEE Kobayashi Computer
and Communication Award and ACM SIGCOMM Award, and a member of
the National Academy of Engineering. He received his Ph.D. from Purdue
University in 1985.

Ali Al-Shabibi is a member of technical staff at the Open Networking Lab.
Before joining ON.Lab, he was a postdoctoral researcher at Stanford Universi-
ty. He received his Ph.D. from the University of Heidelberg, Germany, in 2011
after performing his doctoral research at CERN.

Tom Anschutz is a Distinguished Member of Technical Staff at AT&T. He has
been instrumental in the development of AT&T’s SDN and NFV architecture,
called Domain 2.0. He also has experience in product management and
standards development, where he was named a Distinguished Fellow of the
Broadband Forum. He has been granted 50 patents and earned an M.S.E.E.
at Georgia Tech in 1986.

Scott Baker is a member of technical staff at the Open Networking Lab.
Previously, he was involved in the PlanetLab and GENI projects, where he
contributed the Raven Provisioning Service. He received his Ph.D. from the
University of Arizona in 2005.

Andy Bavier is a member of technical staff at the Open Networking Lab and
an associate research scholar at Princeton University. He has been a long-
time contributor to the PlanetLab and GENI projects, and was awarded the
SIGCOMM Test-of-Time Award as an author of an early PlanetLab paper. He
received his Ph.D. from Princeton University in 2004.

Saurav Das is a principal system architect at the Open Networking Founda-
tion. He did pioneering research on SDN in wide area networks and demon-
strated a converged IP/MPLS/optical WAN architecture based on SDN and
OpenFlow. He also worked on controller scalability at Big Switch Networks
and optical systems at Enablence. He holds an M.S. in optical sciences from
the University of Arizona and a Ph.D. in electrical engineering from Stanford
University.

Jonathan Hart is a member of technical staff at the Open Networking Lab.
Originally from New Zealand, he completed his Bachelor’s degree in network
engineering from Victoria University of Wellington in 2011. He has been
involved with SDN projects in both academia and industry over the past
several years, and is a core developer on the ONOS project.

Guru Parulkar is a consulting professor of electrical engineering at Stanford
University and executive director of the Open Networking Lab. Previously,

The reference imple-

mentation of CORD

is both sufficiently

complete to support

field trials, and general

enough to be applicable

to many telco and cable

applications, including

specific implementations

that address verticals in

this large market.

IEEE Communications Magazine • October 20168

he co-founded and served as CTO of Growth Networks, Tenaya Networks,
and Sceos, and was an early investor in Nicra. He was also a program direc-
tor at the National Science Foundation, where he received NSF’s Program
Management Excellence award. He received his Ph.D. from the University of
Delaware in 1987.

William Snow is VP for engineering at the Open Networking Lab. Previously,
he served as VP of engineering and operations for enterprise security start-
ups, including Cymtec Systems, Agari Data, the 41st Parameter, and Identity
Engines. He also served as director of engineering at Cisco Systems, where he
was responsible for all routing and high availability features of the CRS-1, and
as VP of engineering at Nortel Networks. He received a B.S. in electrical engi-
neering from Cornell University, and M.S. degrees in both electrical and com-
puter engineering and engineering management from Stanford University.

